Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Sci Rep ; 14(1): 8958, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637667

RESUMO

Dominant vegetation in many ecosystems is an integral component of structure and habitat. In many drylands, native shrubs function as foundation species that benefit other plants and animals. However, invasive exotic plant species can comprise a significant proportion of the vegetation. In Central California drylands, the facilitative shrub Ephedra californica and the invasive Bromus rubens are widely dispersed and common. Using comprehensive survey data structured by shrub and open gaps for the region, we compared network structure with and without this native shrub canopy and with and without the invasive brome. The presence of the invasive brome profoundly shifted the network measure of centrality in the microsites structured by a shrub canopy (centrality scores increased from 4.3 under shrubs without brome to 6.3, i.e. a relative increase of 42%). This strongly suggests that plant species such as brome can undermine the positive and stabilizing effects of native foundation plant species provided by shrubs in drylands by changing the frequency that the remaining species connect to one another. The net proportion of positive and negative associations was consistent across all microsites (approximately 50% with a total of 14% non-random co-occurrences on average) suggesting that these plant-plant networks are rewired but not more negative. Maintaining resilience in biodiversity thus needs to capitalize on protecting native shrubs whilst also controlling invasive grass species particularly when associated with shrubs.


Assuntos
Bromus , Ecossistema , Plantas , Biodiversidade , Espécies Introduzidas , California
2.
Pestic Biochem Physiol ; 199: 105794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458688

RESUMO

Japanese brome (Bromus japonicus) has become one of the main weeds in wheat fields in Hebei province of China and causes a large decrease of wheat production. A total of 44 putative resistant and 2 susceptible Japanese brome populations were collected in the 2021/2022 crop season from Hebei province of China to determine resistance levels to flucarbazone­sodium and to investigate the diversity of acetolactate synthase (ALS) mutations, as well as to confirm the cross-and multiple-resistance levels to ALS and EPSPS (5-enolpyruvate shikimate-3-phosphate synthetase) inhibitors. Whole plant bioassay results showed that 15 out of 44 populations tested or 34% were resistant to flucarbazone­sodium. The resistance indices of Japanese brome to flucarbazone­sodium ranged from 43 to 1977. The resistant populations were mainly distributed in Baoding and Shijiazhuang districts, and there was only one resistant population in Langfang district. Resistant Japanese brome had diverse ALS mutations, including Pro-197-Ser, -Thr, -Arg and Asp-376-Glu. The incidence of Pro-197-Ser mutation was the highest at 68%. Application of the CYP450 inhibitor malathion suggested that CYP450 was involved in metabolic resistance in a population without an ALS mutation. The population with Pro-197-Thr mutation evolved weak cross-resistance to mesosulfuron-methyl and pyroxsulam, and it is in the process of evolving multiple-resistance to glyphosate.


Assuntos
Acetolactato Sintase , Herbicidas , Sulfonamidas , Triazóis , Bromus/metabolismo , Herbicidas/farmacologia , Mutação , China , Resistência a Herbicidas/genética , Acetolactato Sintase/metabolismo
3.
Microbiol Spectr ; 12(1): e0177123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38051051

RESUMO

IMPORTANCE: Cheatgrass is one of North America's most problematic invasive species. Invasion by this annual grass alters ecosystem structure and function and has proven very challenging to remove with traditional approaches. Commercially available bioherbicides, like P. fluorescens D7, are applied with the goal of providing lasting control from a single application. However, experimental results suggest that this bioherbicide has limited efficacy under field conditions. Potential explanations for variable efficacy include a failure of this bioherbicide to establish in the soil microbiome. However, to our knowledge, no data exist to support or refute this hypothesis. Here, we use a deep-sequencing approach to better understand the effects of this bioherbicide on the soil microbiome and screen for P. fluorescens at 18 months post-application.


Assuntos
Bromus , Pseudomonas fluorescens , Ecossistema , Solo , Poaceae
4.
Pest Manag Sci ; 80(3): 1523-1532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966429

RESUMO

BACKGROUND: Brome grass (Bromus diandrus Roth) is prevalent in the southern and western cropping regions of Australia, where it causes significant economic damage. A targeted herbicide resistance survey was conducted in 2020 by collecting brome grass populations from 40 farms in Western Australia and subjecting these samples to comprehensive herbicide screening. One sample (population 172-20), from a field that had received 12 applications of clethodim over 20 years of continuous cropping, was found to be highly resistant to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides clethodim and quizalofop, and so the molecular basis of resistance was investigated. RESULTS: All 31 individuals examined from population 172-20 carried the same resistance-endowing point mutation causing an aspartate-to-glycine substitution at position 2078 in the translated ACCase protein sequence. A wild-type susceptible population and the resistant population had similar expression levels of plastidic ACCase genes. The level of resistance to quizalofop, either standalone or in mixture with clethodim, in population 172-20 was lower under cooler growing conditions. CONCLUSION: Target-site resistance to ACCase-inhibiting herbicides, conferred by one ACCase mutation, was selected in all tested brome plants infesting a field with a history of repeated clethodim use. This mutation appears to have been fixed in the infesting population. Notably, clethodim resistance in this population was not detected by the farmer, and a high future incidence of quizalofop resistance is anticipated. Herbicide resistance testing is essential for the detection of evolving weed resistance issues and to inform effective management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bromus , Cicloexanonas , Herbicidas , Propionatos , Quinoxalinas , Humanos , Mutação , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Poaceae , Proteínas de Plantas/genética
5.
Ecology ; 105(1): e4190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877294

RESUMO

Climate change is increasing the frequency and intensity of extreme events like drought and flooding, which threaten to amplify other global change drivers such as species invasion. We investigate the effect of wet and dry extreme precipitation regimes on invasive species' abundances in northern tallgrass prairies. Because soil moisture is a key determinant of prairie composition, theory and evidence suggest drought conditions will hinder invasion, whereas wetter conditions will enhance invasion. To test this hypothesis, we explored the effect of precipitation on invasive plant species abundance from 2010 to 2019 in 25 managed prairies using observations from 267 transects comprising 6675 plots throughout western Minnesota, USA. We estimated how increases in the number of extremely wet or dry months in a year altered overall invasive species abundance and the abundance of the highly invasive grasses Poa pratensis and Bromus inermis. We found that a greater occurrence of abnormally wet months increased invasive species abundance but found mixed evidence that abnormally dry conditions hindered invasion. Further, more moderately wet and dry months reduced native grass abundance. Together, these results suggest that more frequent extremely wet months may intensify invasive dominance and that dry months may not counterbalance these trends. Given the considerable uncertainty still surrounding the interactive effects of climate change and invasion on native plant communities, this research represents an important step toward quantifying the complex influence of precipitation extremes on invasion dynamics in managed ecosystems of critical conservation concern.


Assuntos
Ecossistema , Pradaria , Poaceae , Plantas , Bromus , Espécies Introduzidas
6.
Oecologia ; 203(3-4): 361-370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889314

RESUMO

Human activities are increasing wildfires and livestock activity in arid ecosystems with potential implications for the spread of invasive grasses. The objective of this study was to test whether fire history and cattle activity alter soil resource gradients, thereby affecting patterns of Bromus rubens L. (red brome) invasion. Six paired burned and unburned transect lines (1-km long) were established in the northeast Mojave Desert along the boundaries of four independent wildfire scars. At 100-m transect increment points, we measured the distance to the two nearest cowpats, and two random points and measured the density, height, biomass, and seed production of red brome, soil moisture and inorganic nitrogen (N). Cattle activity was 29% greater along burned transects compared to unburned transects (P < 0.05). Red brome height, density, and seed production were 11-34% greater along burned transects than unburned transects (P < 0.05). Red brome height, biomass, density, and seed production were twofold to tenfold greater next to cowpats compared to random points (P < 0.05). Soils along burned transects and beneath cowpats had greater soil inorganic N (P < 0.05), which was positively correlated with red brome density, height, biomass, and seed production (R2 = 0.60-0.85, P < 0.0001). Transgenerational effects were evident as seeds from red brome next to cowpats had 27% higher germination than seeds collected from random points. Positive responses of red brome to increased inorganic N related to fire and cattle activity may contribute fine fuel infill that drives invasive grass-fire cycles in deserts.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Bovinos , Animais , Solo , Bromus/fisiologia , Nitrogênio/análise , Ecossistema
7.
Glob Chang Biol ; 29(20): 5866-5880, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37489280

RESUMO

Understanding the resilience of ecosystems globally is hampered by the complex and interacting drivers of change characteristic of the Anthropocene. This is true for drylands of the western US, where widespread alteration of disturbance regimes and spread of invasive non-native species occurred with westward expansion during the 1800s, including the introduction of domestic livestock and spread of Bromus tectorum, an invasive non-native annual grass. In addition, this region has experienced a multi-decadal drought not seen for at least 1200 years with potentially large and interacting impacts on native plant communities. Here, we present 24 years of twice-annual plant cover monitoring (1997-2021) from a semiarid grassland never grazed by domestic livestock but subject to a patchy invasion of B. tectorum beginning in ~1994, compare our findings to surveys done in 1967, and examine potential climate drivers of plant community changes. We found a significant warming trend in the study area, with more than 75% of study year temperatures being warmer than average (1966-2021). We observed a native perennial grass community with high resilience to climate forcings with cover values like those in 1967. In invaded patches, B. tectorum cover was greatest in the early years of this study (1997-2001; ~20%-40%) but was subsequently constrained by climate and subtle variation in soils, with limited evidence of long-term impacts to native vegetation, contradicting earlier studies. Our ability to predict year-to-year variation in functional group and species cover with climate metrics varied, with a 12-month integrated index and fall and winter patterns appearing most important. However, declines to near zero live cover in recent years in response to regional drought intensification leave questions regarding the resiliency of intact grasslands to ongoing aridification and whether the vegetation observations reported here may be a leading indicator of impending change in this protected ecosystem.


Assuntos
Ecossistema , Pradaria , Secas , Poaceae , Bromus/fisiologia , Plantas , Espécies Introduzidas
8.
Pest Manag Sci ; 79(10): 4025-4033, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309712

RESUMO

BACKGROUND: The prevalent and repeated use of acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides for Bromus tectorum L. control in fine fescue (Festuca L. spp) grown for seed has selected ACCase-resistant B. tectorum populations. The objectives of this study were to (1) evaluate the response of nine B. tectorum populations to the ACCase inhibitors clethodim, sethoxydim, fluazifop-P-butyl, and quizalofop-P-ethyl and the acetolactate synthase (ALS) inhibitor sulfosulfuron and (2) characterize the resistance mechanisms. RESULTS: Bromus tectorum populations were confirmed to be resistant to the ACCase-inhibiting herbicides tested. The levels of resistance varied among the populations for clethodim (resistance ratio, RR = 5.1-14.5), sethoxydim (RR = 18.7-44.7), fluazifop-P-butyl (RR = 3.1-40.3), and quizalofop-P-ethyl (RR = 14.5-36). Molecular investigations revealed that the mutations Ile2041Thr and Gly2096Ala were the molecular basis of resistance to the ACCase-inhibiting herbicides. The Gly2096Ala mutation resulted in cross-resistance to the aryloxyphenoxypropionate (APP) herbicides fluazifop-P-butyl and quizalofop-P-ethyl, and the cyclohexanedione (CHD) herbicides clethodim, and sethoxydim, whereas Ile2041Thr mutation resulted in resistance only to the two APP herbicides. All B. tectorum populations were susceptible to sulfosulfuron (RR = 0.3-1.7). CONCLUSIONS: This is the first report of target-site mutations conferring resistance to ACCase-inhibiting herbicides in B. tectorum. The results of this study suggest multiple evolutionary origins of resistance and contribute to understanding the patterns of cross-resistance to ACCase inhibitors associated with different mutations in B. tectorum. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bromus , Herbicidas , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Mutação , Acetil-CoA Carboxilase/genética , Inibidores Enzimáticos/farmacologia
9.
Animal ; 17(7): 100865, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37302155

RESUMO

Under the current scenario for climate change, Bromus valdivianus Phil. (Bv), a drought-resistant species, is an option to complement Lolium perenne L. (Lp) in temperate pastures. However, little is known about animal preference for Bv. A randomised complete block design was used to study ewe lamb's preference between Lp and Bv during morning and afternoon grazing sessions in winter, spring, and summer by assessing the animal behaviour and pasture morphological and chemical attributes. Ewe lambs showed a higher preference for Lp in the afternoon in winter (P < 0.05) and summer (P < 0.01), while no differences were found in spring (P > 0.05). In winter, Bv, relative to Lp, had both greater ADF and NDF (P < 0.001), and lower pasture height (P < 0.01) which negatively affected its preference. The lack of differences in spring were due to an increase in ADF concentration in Lp. In summer, ewe lambs showed the typical daily preference pattern, selecting Lp in the morning to ensure a greater quality and showing no preference during the afternoon to fill the rumen with higher fibre content. In addition, greater sheath weight per tiller in Bv could make it less desirable, as the decrease in bite rate in the species was likely due to a higher shear strength and lower pasture sward mass per bite which increased foraging time. These results provided evidence on how Bv characteristics influence ewe lamb's preference; but more research is needed on how this will affect preference for Lp and Bv in a mixed pasture.


Assuntos
Lolium , Feminino , Ovinos , Animais , Bromus , Estações do Ano , Ração Animal/análise , Dieta/veterinária , Carneiro Doméstico
10.
Ecology ; 104(7): e4100, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165924

RESUMO

A history of species co-occurrence in plant communities is hypothesized to lead to greater niche differentiation, more efficient resource partitioning, and more productive, resistant communities as a result of evolution in response to biotic interactions. A similar question can be asked of co-occurring populations: do individual species or community responses differ when communities are founded with plants sharing a history of population co-occurrence (sympatric) or originating from different locations (allopatric)? Using shrub, grass, and forb species from six locations in the western Great Basin, North America, we compared establishment, productivity, reproduction, phenology, and resistance to invaders for experimental communities with either sympatric or allopatric population associations. Each community type was planted with six taxa in outdoor mesocosms, measured over three growing seasons, and invaded with the annual grass Bromus tectorum in the final season. For most populations, the allopatric or sympatric status of neighbors was not important. However, in some cases, it was beneficial for some species from some locations to be planted with allopatric neighbors, while others benefited from sympatric neighbors, and some of these responses had large effects. For instance, the Elymus population that benefited the most from allopatry grew 50% larger with allopatric neighbors than in single origin mesocosms. This response affected invasion resistance, as B. tectorum biomass was strongly affected by productivity and phenology of Elymus spp., as well as Poa secunda. Our results demonstrate that, while community composition can affect plant performance in semi-arid plant communities, assembling communities from sympatric populations is not sufficient to ensure high productivity and invasion resistance. Instead, we observed an idiosyncratic interaction between sampling effects and evolutionary history, with the potential for seed source of individual populations to have community-level effects.


Assuntos
Plantas , Poaceae , Bromus , Biomassa , América do Norte , Ecossistema
11.
Commun Biol ; 6(1): 326, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973344

RESUMO

Bromus tectorum L. is arguably the most successful invasive weed in the world. It has fundamentally altered arid ecosystems of the western United States, where it now found on an excess of 20 million hectares. Invasion success is related to avoidance of abiotic stress and human management. Early flowering is a heritable trait utilized by B. tectorum, enabling the species to temporally monopolize limited resources and outcompete the native plant community. Thus, understanding the genetic underpinning of flowering time is critical for the design of integrated management strategies. To study flowering time traits in B. tectorum, we assembled a chromosome scale reference genome for B. tectorum. To assess the utility of the assembled genome, 121 diverse B. tectorum accessions are phenotyped and subjected to a genome wide association study (GWAS). Candidate genes, representing homologs of genes that have been previously associated with plant height or flowering phenology traits in related species are located near QTLs we identified. This study uses a high-resolution GWAS to identify reproductive phenology genes in a weedy species and represents a considerable step forward in understanding the mechanisms underlying genetic plasticity in one of the most successful invasive weed species.


Assuntos
Bromus , Ecossistema , Humanos , Estados Unidos , Bromus/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Adaptação Fisiológica/genética
12.
PLoS One ; 18(2): e0280100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724141

RESUMO

Eastern redcedar Juniperus virginiana is encroaching into new habitats, which will affect native ecosystems as this species competes with other plants for available resources, including water. We designed a greenhouse experiment to investigate changes in soil moisture content and rooting depths of two-year-old J. virginiana saplings growing with or without competition. We had four competition treatments: 1) none, 2) with a native tree (Quercus stellata), 3) with an invasive grass (Bromus inermis), and 4) with both Q. stellata and B. inermis. We measured soil moisture content over two years as well as root length, total biomass, relative water content, midday water potential, and mortality at the end of the experiment. When J. virginiana and B. inermis grew together, water depletion occurred at both 30-40 cm and 10-20 cm. Combined with root length results, we can infer that J. virginiana most likely took up water from the deeper layers whereas B. inermis used water from the top layers. We found a similar pattern of water depletion and uptake when J. virginiana grew with Q. stellata, indicating that J. virginiana took up water from the deeper layers and Q. stellata used water mostly from the top soil layers. When the three species grew together, we found root overlap between J. virginiana and Q. stellata. Despite the root overlap, our relative water content and water potential indicate that J. virginiana was not water stressed in any of the plant combinations. Regardless, J. virginiana saplings had less total biomass in treatments with B. inermis and we recorded a significantly higher mortality when J. virginiana grew with both competitors. Root overlap and partitioning can affect how J. virginiana perform and adapt to new competitors and can allow their co-existence with grasses and other woody species, which can facilitate J. virginiana encroachment into grasslands and woodlands. Our data also show that competition with both Q. stellata and B. inermis could limit establishment, regardless of water availability.


Assuntos
Juniperus , Quercus , Bromus , Ecossistema , Poaceae , Plantas , Solo
13.
PLoS One ; 17(12): e0278687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477736

RESUMO

Association analysis has been proven as a powerful tool for the genetic dissection of complex traits. This study was conducted to identify association of recovery, persistence, and summer dormancy with sequence related amplified polymorphism (SRAP) markers in 36 smooth bromegrass genotypes under two moisture conditions and find stable associations. In this study, a diverse panel of polycross-derived progenies of smooth bromegrass was phenotyped under normal and water deficit regimes for three consecutive years. Under water deficit, dry matter yield of cut 1 was approximately reduced by 36, 39, and 37% during 2013, 2014, and 2015, respectively, compared with the normal regime. For dry matter yield of cut 2, these reductions were approximately 38, 60, and 56% in the same three consecutive years relative to normal regime. Moreover, water deficit decreased the RY and PER of the genotypes by 35 and 28%, respectively. Thirty primer combinations were screened by polymerase chain reaction (PCR). From these, 541 polymorphic bands were developed and subjected to association analysis using the mixed linear model (MLM). Population structure analysis identified five main subpopulations possessing significant genetic differences. Association analysis identified 69 and 46 marker-trait associations under normal and water deficit regimes, respectively. Some of these markers were associated with more than one trait; which can be attributed to pleiotropic effects or tightly linked genes affecting several traits. In normal and water-deficit regimes, these markers could potentially be incorporated into marker-assisted selection and targeted trait introgression for the improvement of drought tolerance of smooth bromegrass.


Assuntos
Bromus , Resistência à Seca
14.
Sci Rep ; 12(1): 18893, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344537

RESUMO

Glyphosate is the most used herbicide worldwide, and is an important source of economical weed control in glyphosate-resistant crops, and conservation tillage systems, among other uses. Downy brome (Bromus tectorum L.), otherwise known as cheatgrass, is a highly invasive winter-annual grass weed in cropping systems, pastureland, and naturalized or ruderal areas in western North America. In 2021, a downy brome population remained uncontrolled following four applications of glyphosate in a glyphosate-resistant canola (Brassica napus L.) field located in Taber County, Alberta, Canada. All individuals from the subsequent generation of the population survived glyphosate treatment at the typical field rate (900 g ae ha-1). In dose-response bioassays, the putative glyphosate-resistant population exhibited 10.6- to 11.9-fold, 7.7- to 8.7-fold, 7.8- to 8.8-fold, and 8.3- to 9.5-fold resistance to glyphosate based on plant survival, visible control, and biomass fresh weight and dry weight, respectively, compared with two susceptible populations 21 days after treatment. Estimated glyphosate rates for 80% control of this population ranged from 2795 to 4511 g ae ha-1; well above common usage rates. This downy brome population represents the first glyphosate-resistant grass weed confirmed in Canada, and the second weed species exhibiting glyphosate resistance in the Canadian prairie region.


Assuntos
Brassica napus , Herbicidas , Humanos , Bromus , Glicina/farmacologia , Controle de Plantas Daninhas , Herbicidas/farmacologia , Alberta , Resistência a Herbicidas/genética
15.
PeerJ ; 10: e13884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193423

RESUMO

To investigate phylogenetic relationships among and within major lineages of Bromus, with focus on Bromus sect. Bromus, we analyzed DNA sequences from two nuclear ribosomal (ITS, ETS) and two plastid (rpl32-trnLUAG , matK) regions. We sampled 103 ingroup accessions representing 26 taxa of B. section Bromus and 15 species of other Bromus sections. Our analyses confirm the monophyly of Bromus s.l. and identify incongruence between nuclear ribosomal and plastid data partitions for relationships within and among major Bromus lineages. Results support classification of B. pumilio and B. gracillimus within B. sect. Boissiera and B. sect. Nevskiella, respectively. These species are sister groups and are closely related to B. densus (B. sect. Mexibromus) in nrDNA trees and Bromus sect. Ceratochloa in plastid trees. Bromus sect. Bromopsis is paraphyletic. In nrDNA trees, species of Bromus sects. Bromopsis, Ceratochloa, Neobromus, and Genea plus B. rechingeri of B. sect. Bromus form a clade, in which B. tomentellus is sister to a B. sect. Genea-B. rechingeri clade. In the plastid trees, by contrast, B. sect. Bromopsis species except B. tomentosus form a clade, and B. tomentosus is sister to a clade comprising B. sect. Bromus and B. sect. Genea species. Affinities of B. gedrosianus, B. pulchellus, and B. rechingeri (members of the B. pectinatus complex), as well as B. oxyodon and B. sewerzowii, are discordant between nrDNA and plastid trees. We infer these species may have obtained their plastomes via chloroplast capture from species of B. sect. Bromus and B. sect. Genea. Within B. sect. Bromus, B. alopecuros subsp. caroli-henrici, a clade comprising B. hordeaceus and B. interruptus, and B. scoparius are successive sister groups to the rest of the section in the nrDNA phylogeny. Most relationships among the remaining species of B. sect. Bromus are unresolved in the nrDNA and plastid trees. Given these results, we infer that most B. sect. Bromus species likely diversified relatively recently. None of the subdivisional taxa proposed for Bromus sect. Bromus over the last century correspond to natural groups identified in our phylogenetic analyses except for a group including B. hordeaceus and B. interruptus.


Assuntos
Bromus , Poaceae , Filogenia , Bromus/genética , DNA de Plantas/genética , Triticum/genética , Plastídeos/genética
16.
Oecologia ; 199(4): 1007-1019, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35969273

RESUMO

Displacement of diverse native plant communities by low-diversity invasive communities is a global problem. In the western United States, the displacement of sagebrush-dominated communities by cheatgrass has increased since the 1920s. Restoration outcomes are poor, potentially due to soil alteration by cheatgrass. We explored the poorly understood role of plant-soil feedbacks in the dominance of cheatgrass in a greenhouse study where uninvaded sagebrush soils were conditioned with either cheatgrass, a native bunchgrass or sagebrush. Sagebrush seedlings were grown in the soils that remained following the removal of conditioning plants. We expected cheatgrass to strongly suppress sagebrush due to a change in belowground microbial communities, conspecifics to have neutral effects and the native bunchgrass to have intermediate effects as it coevolved with sagebrush but belongs to a different functional group. We assessed the effects of conditioning on sagebrush growth, tissue nutrients, and carbon allocation. We also characterized the abundance, diversity and community composition of root microbial associates. Cheatgrass strongly suppressed sagebrush growth at high and low conditioning densities, the native bunchgrass showed suppression at high conditioning densities only and conspecific effects were neutral. Tissue nutrients, amount of root colonization by soil fungi or root microbial community composition were not associated with these plant-soil feedbacks. Although we did not identify the precise mechanism, our results provide key evidence that rapid soil alteration by cheatgrass results in negative plant-soil feedbacks on sagebrush growth. These feedbacks likely contribute to cheatgrass dominance and the poor success of sagebrush restoration.


Assuntos
Artemisia , Solo , Bromus , Retroalimentação , Poaceae
17.
Pest Manag Sci ; 78(12): 5080-5089, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36039692

RESUMO

BACKGROUND: Early detection of herbicide resistance in weeds is crucial for successful implementation of integrated weed management. We conducted a herbicide resistance survey of the winter annual grasses feral rye (Secale cereale), downy brome (Bromus tectorum), and jointed goatgrass (Aegilops cylindrica) from Colorado winter wheat production areas for resistance to imazamox and quizalofop. RESULTS: All samples were susceptible to quizalofop. All downy brome and jointed goatgrass samples were susceptible to imazamox. Out of 314 field collected samples, we identified three feral rye populations (named A, B, and C) that were imazamox resistant. Populations B and C had a target-site mechanism with mutations in the Ser653 residue of the acetolactate synthase (ALS) gene to Asn in B and to Thr in C. Both populations B and C had greatly reduced ALS in vitro enzyme inhibition by imazamox. ALS feral rye protein modeling showed that steric interactions induced by the amino acid substitutions at Ser653 impaired imazamox binding. Individuals from population A had no mutations in the ALS gene. The ALS enzyme from population A was equally sensitive to imazamox as to known susceptible feral rye populations. Imazamox was degraded two times faster in population A compared with a susceptible control. An oxidized imazamox metabolite formed faster in population A and this detoxification reaction was inhibited by malathion. CONCLUSION: Population A has a nontarget-site mechanism of enhanced imazamox metabolism that may be conferred by cytochrome P450 enzymes. This is the first report of both target-site and metabolism-based imazamox resistance in feral rye. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Acetolactato Sintase , Herbicidas , Humanos , Secale , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Bromus , Proteínas de Plantas/genética
18.
Environ Manage ; 70(2): 319-328, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577981

RESUMO

Invasive annual grasses alter fire regime in steppe ecosystems, and subsequent trends toward larger, more frequent wildfires impacts iconic biodiversity. A common solution is to disrupt novel fuel beds comprising continuous swaths of invasive annual grasses with greenstrips-linear, human-maintained stands of less-flammable vegetation. But selecting effective native species is challenged by the fact that identifying the optimal combination of plant traits that interrupt wildfire spread is logistically difficult. We employed fire behavior simulation modeling to determine plant traits with high potential to slow fire spread in annual Bromus-dominated fuelbeds. We found species with low leaf:stem (fine:coarse) ratios and high live:dead fuel ratios to be most effective. Our approach helps isolate fuelbed characteristics that slow fire spread, providing a geographically-agnostic framework to scale plant traits to greenstrip effectiveness. This framework helps managers assess potential native species for greenstrips without needing logistically-difficult experimental assessments to determine how a species might affect fire behavior.


Assuntos
Ecossistema , Incêndios Florestais , Biodiversidade , Bromus , Plantas , Poaceae
19.
Proc Natl Acad Sci U S A ; 119(16): e2120975119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412916

RESUMO

Biological soil crusts (biocrusts), comprised of mosses, lichens, and cyanobacteria, are key components to many dryland communities. Climate change and other anthropogenic disturbances are thought to cause a decline in mosses and lichens, yet few long-term studies exist to track potential shifts in these sensitive soil-surface communities. Using a unique long-term observational dataset from a temperate dryland with initial observations dating back to 1967, we examine the effects of 53 y of observed environmental variation and Bromus tectorum invasion on biocrust communities in a grassland never grazed by domestic livestock. Annual observations show a steep decline in N-fixing lichen cover (dominated by Collema species) from 1996 to 2002, coinciding with a period of extended drought, with Collema communities never able to recover. Declines in other lichen species were also observed, both in number of species present and by total cover, which were attributed to increasing summertime temperatures. Conversely, moss species gradually gained in cover over the survey years, especially following a large Bromus tectorum invasion at the study onset (ca. 1996 to 2001). These results support a growing body of studies that suggests climate change is a key driver in changes to certain components of late-successional biocrust communities. Results here suggest that warming may partially negate decades of protection from disturbance, with biocrust communities reaching a vital tipping point. The accelerated rate of ongoing warming observed in this study may have resulted in the loss of lichen cover and diversity, which could have long-term implications for global temperate dryland ecosystems.


Assuntos
Ascomicetos , Aquecimento Global , Líquens , Microbiologia do Solo , Bromus , Briófitas , Secas , Ecossistema , Espécies Introduzidas , Fixação de Nitrogênio , Estações do Ano , Temperatura
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...